SMART IDS: An Enhanced Network Security Model in IP-MPLS Based Virtual Private Network

K.C. Okafor, C.C. Okezie, C.C. Udeze, N. Okwuelu

Electronics and Computer Engineering Department, Nnamdi Azikiwe University, Awka, Nigeria
arissyncline@yahoo.com, christianaobioma@yahoo.com, udezechidiebele@yahoo.com, god4meks@gmail.com

ABSTRACT
Contemporary, global cyber terrorism via the internet have changed the landscape of security implementations in cooperate organizations. This paper discusses analyses and develops novel security architecture for secure transactions in Virtual Private Network (VPN) environments. Open standard VPN has been in use for a long time without addressing the security holes in VPN wired and wireless networks. Several proposals have been made in the context of enhanced intrusion detection system (IDS) and reliable VPN design which is presumed to provide an in depth solution that guarantees secure operations of the enterprise network. However, this work presents SMART Network Security System (SNSS) which is shown to be very reliable and supports multiple functionalities for both LAN and WLAN VPN setups. The SNSS models have a Multilayer Access Point Intrusion Detection System (MAPIDS) sensor for monitoring traffic and network behavior. Also, cryptographic security features viz: authentication, confidentiality, integrity and auto-replay characterize the model. As such, the system is developed for multiple integration and cost effectiveness for its deployment. Performance parameters such IP VPN tunnel TCP behaviour as well as SNSS traffic throughput effects, were analyzed. The modeling and simulation was executed with OPNET IT Guru application while generating our validation plots in the network model.

Keywords: VPN, Novel, IDS, cryptographic, security, L2VPNS, MPLS, SNSS

African Journal of Computing & ICT Reference Format:

1. INTRODUCTION

This research develops an enhanced security model for enterprise VPN known as Self Monitoring, Analysis and Reporting Technology Intrusion Detection System (SMART IDS) for enhanced QoS. The model leverages on enhanced IP/MPLS internet backbone for data tunneling. According to [1], Intrusion detection is the act of detecting unwanted traffic on a network or a device. An IDS can be a piece of installed software or a physical appliance that monitors network traffic in order to detect unwanted activity and events such as illegal and malicious traffic, traffic that violates security policy, and traffic that violates acceptable use policies. Many IDS tools will store a detected event in a log to be reviewed at a later date or will combine events with other data to make decisions regarding policies or damage control [1].

As organizations are in dear need of scalable and secure communication path for their business processes, virtual private network (VPN) on-site or off-site (collocation facility) offers a viable solution. A VPN is a network, built on top of existing physical networks that can provide a secure communications mechanism for data and other information transmitted between two endpoints [2]. Because a VPN can be used over existing networks such as the Internet, it can facilitate the secure transfer of sensitive data across public networks (internet) [2].

VPN maintains data privacy through the use of a tunneling protocol and security procedures. This work considered two most common types in order to develop our model viz: Remote access VPN and site-to-site VPN. The Remote Access VPN configuration is used to allow VPN software clients such as mobile users to securely access centralized network resources that reside behind a VPN server [3], as shown in figure 1. The site-to-site VPN allows creating dedicated, secure connections between locations across the open Internet or public connection. They can be either Intranet-based or Extranet-based. In its simplest form, by encrypting data while it is sent and decrypting it at the receiver, the data is effectively sent through a tunnel that cannot be masked in the communications process [2].

It involves placing a packet within another packet and sending it over a network. The protocol of the outer packet is understood by the network at both points, called tunnel interfaces, where the packet enters and exits the network [3]. Figure 2 shows the site-to-site VPN model. Basically, this work models a SMART VPN for secure transaction that rely on tunneling to create a private network that reaches remote locations via the Internet. Data file from branch LAN is broken into a series of packets to be sent and received by computers connected via Internet.
Tunneling is the process of placing an entire packet within another packet before it's transported over the Internet to the remote location. Using encapsulation packet layering (EPL), the data packet is protected from public view or attack and ensures that the packet moves within a virtual tunnel. The tunnel interfaces on the branch LAN for both tunnel ends encapsulates outgoing packets and reopens incoming packets. Users at one or both ends of the tunnel use the link based on the configured tunneling protocol which serves as a standardized way to encapsulate packets by adding a layer of security that protects each packet as it transverses over the public Internet.

The network model adopted in this research is a Site 2 Site VPN model for LAN and wireless supports. The SMART IDS APs establishes connections to both LAN and WLAN nodes directly connected to the management switch and APs hotspots respectively. SMART APs creates the gateway link to the IP cloud. The internet backbone for the VPN tunneling is an IP-MPLS service offering which in MPLS-based VPNs adhere to the “true peer VPN” model since they perform traffic separation at Layer 3 through the use of separate IP VPN forwarding tables [4].

The packet is transported with the same transport protocol which defines how each computer sends and receives data over its ISP. The network architecture developed in this work comprises the N+1 Branch LANs (intranet), Infrastructure management Switch supporting Virtualization firmware, SMART IDS Access Points (2), Management IDS Server, Network Access Server (RADIUS AAA server), the IP/MPLS internet backbone and the Main LAN office with Data center network.

Figure 1: Remote VPN Model

MPLS-based VPNs enforce traffic separation between customers by assigning a unique (Virtual Routing and Forwarding) VRF instance to each customer’s VPN. Forwarding within the service provider backbone is based on labels; MPLS sets up label-switched paths (LSPs), which begin and terminate at the provider-edge routers. The provider-edge router determines which forwarding table to use when handling a packet because each incoming interface on a provider-edge router is associated with a particular VPN. Therefore, a packet can enter a VPN only through an interface that is associated with that VPN [4].

The scope of this paper is majorly on SMART AP IDS traffic regulation, Network Access Server (NAS), IP/MPLS backbone, Enhanced end to end security implementation and throughput consideration as the metrics of interest in the SMART VPN design. The paper is organized as follows: In section II, the literature review was discussed, the general system model and assumptions for SSNS was presented in III. In IV, SNSS mechanism is presented. Section V gives the simulation results to support our propositions. The paper ends with the conclusions and future directions.
2. RELATED WORKS

The authors in [2] opines that the best security solution in a wireless domain could be found in open, standard-based technologies delivered by Virtual Private Networking (VPN). The work explained that by integrating wireless LANs into an IPsec infrastructure, this will allow WLAN infrastructure to focus on simply transmitting wireless traffic, while the VPN would secure it. The work in [5] presents Secure Sockets Layer (SSL) virtual private networks (VPN) as an approach to secure remote access to organization’s resources, (See figure 1). It further explained and classified Secure Sockets Layer (SSL) virtual private networks (VPN) into SSL Portal VPNs and SSL Tunnel VPNs. In the former, users use a single standard SSL connection to a Web site to access multiple network services. The remote user accesses the SSL VPN gateway using any modern Web browser, and is authenticated to the gateway using an authentication method supported by the gateway, and is then presented with a Web page that acts as the portal to the other services.

The later allows a user to use a typical Web browser to securely access multiple network services, including applications and protocols that are not web-based, through a tunnel that is running under SSL. The white paper in [6] compares the IPsec and SSL VPN implementations for secure remote access to an organization’s resources. IPSEC VPNs are the best solution for office-to-office secure LANs, especially with trusted and secured applications. The authors in this work agrees with the views of [6] since in a site to site VPN, this allows the greatest flexibility while maintaining high security.

The sampled literature in [7] discusses VPN in the context of economics of communications and communications privacy at large. In a VPN setup, intrusion detection system (IDS) model can be host-based IDS (HIDS) or network-based IDS (NIDS) [8]. HIDS is installed at a host to periodically monitor specific system logs for patterns of intrusions. In contrast, an NIDS sniffs the traffic to analyze suspicious behaviors. A signature-based NIDS (SNIDS) examines the traffic for patterns of known intrusions. SNIDS can quickly and reliably diagnose the attacking techniques and security holes without generating an over-whelming number of false alarms. This is because SNIDS relies on known signatures. However, anomaly-based NIDS (ANIDS) detects unusual behaviors based on statistical methods. ANIDS could detect symptoms of attacks without specific knowledge of details [8]. The authors in [9] discusses how the integrated security gateway can be implemented using the open source packages. Ron Gula [10] presents the vulnerability correlation with the IDS alerts and specifies two methods of correlating the vulnerability with the IDS alerts

From our sample surveys, this paper argues that a VPN model with an enhanced security specification can establish secured virtual links among different organizations via an IP/MPLS internet backbone. Packet Tunneling facilitates the virtual lease line while cryptographic technologies prevent private information passing through the public Internet from being hijacked. However, when complex cryptographic algorithms are adapted for encryption and decryption within VPN tunnels, it creates a cost overhead for such design models. Consequently, this paper presents a SMART IDS model over an IP/MPLS backbone to enhance security, maximize throughput, minimize the latency and reduce deployment cost as shown in figure 3. Modern VPN technologies such as PPTP, L2TP, and IPSec PPTP and L2TP work at the data link layer and are suitable for secure remote access between mobile users and enterprises and it’s integrated into modern AP routers. In contrast, IPsec works at the network layer.

3. SYSTEM DESIGN AND ASSUMPTIONS

A. System Model

The high performance SMART IDS VPN model in this research takes cognizance of throughput effects, latency, IP tunnel delay and ping response times for each branch LAN and WLAN for tunnel interfaces shown in Fig. 3. It assumed that the management switch supports virtualization partitioning for all interfaces. Also the SMART AP is a composite powerful intelligent monitoring device combined with radio which acts as a sensor, traffic analyzer/optimizer with user interface authentication. The throughput model developed by [11] provides an accurate and simple analytical model for a finite number of terminals and ideal channel conditions.

The probability that each node in the branch LAN transmits is given by

\[r = \frac{1 - p^{m+1}}{1 - p} \times b_{0,0} \] \hspace{1cm} (1)

Where, \(p \) is the conditional collision probability and \(m \) is maximum backoff stage, also \(b_{0,0} \) is expressed as:

\[b_{0,0} = \frac{2(1-2p)(1-p)}{(1-2p)(W+1)+W(1-(2p)m)} \] \hspace{1cm} (2)

Where \(W \) is the contention window.

An infinite population model was assumed in this work for our terminal LANs, but not stated outrightly. New data packets were generated according to a Poisson process with rate \(\lambda \) packets. Hence, the following performance indices were derived for all the tunnel interfaces. The total throughput of a LAN channel is given as:

\[S = T_o \sum_{i=1}^{M} S_i / T_i \] \hspace{1cm} (3)

Where, \(T_o \) = time needed to transmit a packet on a single broadcast channel
M = parallel broadcast channels, i

$$S_i = \lambda T_o$$

(4)

T_o = time needed to transmit a packet on an i broadcast channel

Where, λ = packets/s according to Poisson process

Throughput of non-persistent branch tunnel interface is given viz:

$$S = S_i = \frac{Ge^{-GM}}{1 + G}$$

(5)

Where,

- G_i = offered traffic in the ith channel,
- M = numbers of parallel link channels,
- σ = length of jammed time after collision,
- a_o = normalized propagation delay

T_o = time needed to transmit a packet on a single broadcast channel with bandwidth W_i.

Throughput of a random choice carrier sense multiple access with collision detection CSMA-CD-RC

$$S = S_i = \frac{Ge^{-GM}}{1 + G}$$

(6)

Where, P_o = the probability that a station senses the chosen channel idle,

$$D_o = \left(\frac{G}{S}P_o - 1\right)(M + X_o + \tau_o + 2a_o) + \left(\frac{G}{S}P_o - 1\right)X_o + M + a_o$$

(7)

Where, D_o = average packet delay normalized to T_o,

G = offered traffic in the ith channel

X_o = average transmission delay normalized to T_o,

τ_o = acknowledgement time normalized to T_o,

a_o = normalized propagation delay
The branch LANs were assumed to be a continuous time CSMA/CD (carrier sense multiple access with collision detection) system with a finite number of homogeneous Stations, each possessing an infinite buffer. The system was decomposed and approximately treats each LAN as an independent M/G/1 queuing system. With this analysis, the mean traffic delay can be numerically obtained.

Conclusively, the stability of the system becomes more sensitive to the retransmission interval as the number of LAN nodes increases, [12].

B. Queue Stability

The M/G/1 queuing system model was adopted to perform this task and consequently, the expression was illustrated thus:

\[
\frac{1}{\gamma} \leq \frac{1}{\lambda} - (T + D) \quad (8)
\]

Where, \(\gamma \) = exponential distribution parameter, \(\lambda \) = Poisson process parameter, \(T + D \) = service time

The Laplace-Stieltjes transform (LST) of service time distribution function

\[
G_1^*(S) = b_1 \exp [-S(T + D)] + (1 - b_1) G^*(s) \quad (9)
\]

Where, \(b_1 \) = the probability that a node senses an idle tunnel interface and succeeds in transmission
\(T \) = transmission time of a data packet
\(D \) = maximum propagation delay

The probability generating function of the stationary queue length distribution at arbitrary constant is given as:

\[
L(z) = P_0 \frac{zG_1^*(\lambda - \lambda z) - G^*_2(\lambda - \lambda z)}{z - G^*_2(\lambda - \lambda z)} \quad (10)
\]

where, \(P_0 \) = probability of passive node in the system model at traffic arrival instant, Hence,

\[
R = \frac{L}{\lambda} \quad (11)
\]

Where, \(R \) = mean response time, \(L \) = mean queue length.

C. Access Protocol (Ethernet CSMA/CD)

The implementation of a local area network operating under CSMA-CD protocol was analyzed in our context. In generating another form of throughput, a generalized protocol combining contention mode in the idle state of the channel and reservation mode in the busy state of the channel was proposed in [13]. Figure 4 shows the model layout for terminal (DTEs) devices on layer 2 and layer 3 of the OSI model.

Following our discussions in equations (3), (5) and (6), this work summarizes throughput for our model in equation (12) and (14), given as:

\[
S = \frac{\text{Number of successful transmissions}}{\text{Total transmission time}} \quad (12)
\]

\[
S_{\text{MAX}} = \frac{P}{(P + F)} \quad (13)
\]

Where, \(P \) = time length of a message, \(F \) = time length for an interframe time fill.

The maximum throughput for Expressnet SNSS model is given as:
\[
S_{\text{MAX}} = \frac{N \times P}{2D + (r + P) + (N - 1)(F + r + P)}
\]

(14)

Where, \(N \) = number of LAN stations, \(P \) = time length of packet traffic, \(D \) = end-to-end propagation delay, \(2D \) = period after collision detection, \(r \) = reservation signal time length, \(F \) = reservation signal time length

The protocol combining contention mode in the idle state of the channel and reservation mode in the busy state of the channel was proposed in [13]. Figure 4 shows the model layout for terminal (DTEs) devices on layer 2 and layer 3 of the OSI model. \(G_{Al} \) to \(G_{An} \) represents the traffic sources for the LANs.

Figure 4: SNSS Conceptual layout for Ethernet DTE devices on layer 2 and layer 3 of the OSI model.

4. TESTBED FRAMEWORK

In our testbed, we assumed that a collocation data center will house all our VPN components for scalable and secure access. The infrastructure components adopted in our deployment model include:

i. Three Active Sites (Branch LANs) with WLAN and LAN Supports (250 Nodes each)

ii. A Management Switch with virtualization support.

iii. 2-SMART IDS APs for traffic screening, optimization, and accreditation of tunnel interfaces.

iv. IDS Management Server (Enterprise Redhart Server)

branch LANs by wireless and wired clients). Figure 3 shows our proposed model to achieve a more reliable secured remote data transmission.

The SMART IDS AP monitors all the devices (MAC, IP and passwords) as well as user activities.

Figure 4: SNSS Conceptual layout for Ethernet DTE devices on layer 2 and layer 3 of the OSI model.
v. VPN-enabled Firewall -- This is a conventional firewall protecting traffic between tunnel interfaces with added feature of managing traffic using protocols specific to VPNs.

vi. Network Access Server (NAS) with back office Applications (For Network Monitoring, Configuration, Authentication, Authorization and Accounting (AAA Server)). NAS or VPN Concentrator replaces an AAA server installed on a generic server. The hardware and software work together to establish VPN tunnels and handle large numbers of simultaneous connections.

vii. VPN-enabled/VPN-optimized Router -- This is a typical router that delegates traffic on a network, but with the added feature of routing traffic using protocols specific to VPNs.

viii. VPN Client – This is software running on a dedicated device on branch LANs that acts as the tunnel interface for multiple connections.

From figure 3, the SMART IDS is an integrated module that monitors and takes input from various sources, including network packets, log files, and system call traces. Input is collected, organized, and then forwarded to one or more analyzers which then determine if an intrusion has actually occurred. Output from the analyzers will include an evidence supporting the intrusion report as well as providing recommendations and guidance on mitigation steps.

The user interface component of the SMART IDS provides the end user a view and way to interact with the system. Through the interface the user can control and configure some authentication credentials. It can also generate reports as well.

Finally, the SMART IDS management server which acts as an analyzer is deployed for mapping with the sensors. IDS Management server connects to sensors via a management network and makes decisions based on what the sensor reports. Besides, it can correlate information from several sensors and make decisions based on specific traffic in different locations on the network and execute some security policy and controls. It has a management logging databases, and consoles which are unique in that they can be run in centralized or decentralized modes. In centralized systems, the data is correlated at a central location and decisions and actions are made based on that data. In decentralized systems, decisions are made at the sensors only.

In context, our SNNS model satisfies the following essential metrics viz:

- Robust Security – The SNSS VPN model protect data while traversing via the public network. Hence, it optimizes traffic and deploys SMART encryption based on permanent key integrity protocol (PKIP).
- Reliability- Remote users can connect to the VPN model at any time and it provides same quality of connection for each user even when it is handling its maximum number of simultaneous connections. Essentially, it has high quality of service guarantee class.
- Scalability – It supports enterprise scalability with legacy technology.

5. Simulation Parameters

Table 1 shows our simulation parameters in this research. The work in [14] outlined comprehensive steps involved in developing a simulation model, designing a simulation experiment, and performing simulation analysis. In this work, to validate the system performance of the proposed SNSS model, OPNET Modeler [15] was used to achieve the objective. OPNET Modeler is a graphical network simulator mainly used for simulation of both wired and wireless communication networks and information systems [15]. The network model, node model and process models were accomplished in our test bed using OPNET modeler. After setting up the model, a simulation run was carried out to generate our graphical plots shown in this work (Fig 3). Also, as in the case in [15], a consistency test was carried out which shows that the design model is stable and consistent before the simulation execution.

<table>
<thead>
<tr>
<th>Tunnel Source Name</th>
<th>Tunnel Destination</th>
<th>Delay Information</th>
<th>Operation Mode</th>
<th>Remote Client List</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2TP Access Server</td>
<td>LNS/Branch LAN</td>
<td>Encryption Delay (Sec) = 0.05</td>
<td>Compulsory</td>
<td>LAN Branch 1</td>
</tr>
<tr>
<td>Network Access Server (NAS)</td>
<td>Firewall</td>
<td>Decryption Delay (sec) = 0.05</td>
<td>Compulsory</td>
<td>LAN Branch 2</td>
</tr>
<tr>
<td>Network Access Server (NAS)</td>
<td>Firewall</td>
<td>Decryption Delay (sec) = 0.05</td>
<td>Compulsory</td>
<td>LAN Branch 3</td>
</tr>
</tbody>
</table>
6. SIMULATION RESULTS AND DISCUSSION

The results shown from figures 7 to figure 13 validates performance improvement and stability of SNSS model. Figure 5a depicts the network model developed in this work. Also, figure 5b shows the SNSS initialization as well.

Table 2 shows a logging configuration table for our model. The branch LAN sources have tunnel interfaces which periodically send out 256kb data encrypted over the IP/MPLS backbone while allowing the multilayer SMART IDS AP to monitor and analyze the entire end to end devices. All packets have a maximum translation unit (MTU) of 1500 bytes.

Figure 5a: SNSS OPNET Network Model

The IP mapping, MPLS configurations and parameter characterization were injected into the system workload; however with our remote client list without considering stochastic perturbations, the simulation convergence presents a stable SNSS as shown in figure 5b.

Table 2: SNMP/Logging Configuration Table

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue Length</td>
<td>10</td>
</tr>
<tr>
<td>Packet Size (MTU)</td>
<td>1500</td>
</tr>
<tr>
<td>Timeout</td>
<td>30 secs</td>
</tr>
<tr>
<td>Source interface</td>
<td>Outgoing</td>
</tr>
<tr>
<td>SNMP Reload</td>
<td>Enabled</td>
</tr>
<tr>
<td>SNMP manager</td>
<td>Enabled</td>
</tr>
<tr>
<td>Location Information</td>
<td>Promoted</td>
</tr>
<tr>
<td>Contact Information</td>
<td>Promoted</td>
</tr>
<tr>
<td>Nabled traps</td>
<td>MPLS-Traffic Engineering</td>
</tr>
<tr>
<td>Console Login</td>
<td>Debugging(7)</td>
</tr>
<tr>
<td>Internal buffer Size</td>
<td>4096</td>
</tr>
<tr>
<td>Logging</td>
<td>Notification(5)</td>
</tr>
<tr>
<td>Link Port a</td>
<td>L2TPNAS.PPP</td>
</tr>
<tr>
<td>Link Port b</td>
<td>Internet.PPP</td>
</tr>
</tbody>
</table>

Figure 5b: SNSS OPNET initialization characterization

Fig. 6 shows the completed network simulation representation used in OPNET for our experiments. Two separate scenarios were used. The first is used for the VPN experiment, and the second for the SNSS FTP session. Both representations contained the same elements as shown in our testbed in section IV; with the difference that the former was created from custom process model to simulate more accurately the exact characteristics of the VPN testbed and the latter uses the standard and a custom tuned version of VPN traffic flows.

Figure 6: SNSS completed Simulation
Figs. 7 and 8 show higher throughput for the network testbed. Essentially, the end to architecture that allows IP/MPLS internet backbone to tunnel data creates an efficient traffic flow via the tunnel interfaces. This justifies a reliable system model since the link latency is very insignificant in our case.

![Graph showing throughput behaviour](image)

Figure 7: SNSS branch LAN Node throughput behaviour

![Graph showing throughput behaviour](image)

Figure 8: SNSS branch LAN throughput behavior
The integration of SNSS VPN definitely affects the way the TCP services flow through the tunnels. The SMART IDS (monitors) at the edge of the network (end to end) smartens http requests and acknowledgements by the remote active users. Security implementation with our testbed infrastructure creates terminal tunnel confidence at different times as shown in fig. 9. Hence, the proposed model in this work is envisaged to be very secure from any form of traffic. Also a number of security parameters are affected whenever a change is made on the NAS server.

Figure 10 shows an efficient site to site throughput response against the branch LAN load index. From fig 10, to assess and justify the link throughput in our model, we first used the Ethereal wireshack tool[16] to analyze real packet flow policies in a typical site 2 site VPN model as well as in some local production networks in an area.
In many cases, the ethereal protocol analyzer has shown to be effective by discovering many packet conflicts from a source to a destination that cannot be discovered by human visual inspection. We made an attempt to quantitatively evaluate the practical consequences of unverified packets from sources on the network throughput. The Ethereal tool provides a wide range of network statistics which ranges from general information about the loaded capture file (like the number of captured packets), to statistics about specific protocols (e.g. statistics about the number of HTTP requests and responses captured) in LAN testbeds.

7. CONCLUSION
This work presents SMART Network Security System (SNSS) in the context of network security and quality of service in an IP-MPLS based VPN. In this paper, the SNSS which is shown to be very reliable and supports multiple functionalities for both LAN and WLAN VPN setups. In deployment context, the SNSS have a Multilayer Access Point Intrusion Detection System (MAPIDS) sensor for monitoring traffic and network behavior. Also, in our model, the security features were configured and tested in the simulator for authentication, confidentiality, integrity and auto-replay, which characterizes the model. In the work, the link throughput is the area analyzed from the global and object palette of the OPNET simulator, which indicates the receiving and sending of data packets considering the security configurations. The utilized point to point link at the simulated scenarios between the IDS APs, NAS and management switch (MLS) (see figure 3) satisfied efficient link utilization in the model. It was observed site to site throughputs can be as high as 100% owing to bandwidth optimizing feature of the remote gateways and device platforms. Consequently, SNSS will satisfy the security requirements of IT based enterprises at low cost and while offering effectiveness in its deployment.

REFERENCES

Author’s Profile

Okafor Kennedy C. is a Systems Architect and R&D Consultant. He holds B.Eng in Electrical Electronics Engineering, (ESUT), M.Eng in Digital Electronics and Computer Engineering, (UNN) while currently pursuing his PhD in Electronics Engineering at University of Nigeria Nsukka. He works with Electronic Development Institute, Awka under National Agency for Science and Engineering Infrastructure, Nigeria as an R&D Engineer. He has various vendor certifications including Cisco Certified Network Associate, A+, and Server+. He is a member of NSE, IEEE, NCS, and IAENG. His areas of interest include Network Design & Cloud Management, Middleware Technologies, VLSI, Enterprise-Wide Systems, Database Technologies, Application Development, Security, WSN Technologies, and Project Management. He can be reach via Email: arissyncine@yahoo.com, +2348034180668

Okezie Christiana C is an Associate Professor in Electronic and Computer Engineering Department of Nnamdi Azikiwe University Awka. She received her B. Eng, from Anambra State University of Technology (ASUTECH), her M. Eng, and Ph.D from Enugu State University of Science and Technology, Enugu, Nigeria. She majors in digital systems, e-governance, e-learning and control engineering and has many publications to her credit. Email- christianaobioma@yahoo.com.

Udeze Chidiebele C. received his B.Eng, M.Sc and PhD in Electronics and Computer Engineering from Nnamdi Azikwe University, Awka, Nigeria. He holds his PhD in computer and control systems engineering. He is a Senior R & D Engineer with Electronics development Institute Awka, Nigeria. He works with Electronic Development Institute, Awka under National Agency for Science and Engineering Infrastructure, Nigeria as an R&D Engineer. He is a member of Nigerian Society of Engineers and has his COREN registration. His current research interest is on DataCenter networks, Cloud Computing and Applications, WSN Technologies, and Control Systems Engineering. Email: udezechidiebele@yahoo.com.

Okwelu Nnaemeka got his B.Eng in Electrical Electronics Engineering from University of Agriculture, Makurdi, Nigeria. He is a Research & Development Engineer with Electronics Development Institute, Awka, Nigeria. His current area of research interest is on Electronic System Engineering and Power Electronics. Phone Number: +2348037730844, Email: god4meaks@gmail.com.